Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley Fever Virus

نویسندگان

  • Jacquelyn M. Bales
  • Diana S. Powell
  • Laura M. Bethel
  • Douglas S. Reed
  • Amy L. Hartman
چکیده

Humans infected with Rift Valley Fever Virus (RVFV) generally recover after a febrile illness; however, a proportion of patients progress to a more severe clinical outcome such as hemorrhagic fever or meningoencephalitis. RVFV is naturally transmitted to livestock and humans by mosquito bites, but it is also infectious through inhalational exposure, making it a potential bioterror weapon. To better understand the disease caused by inhalation of RVFV, Wistar-Furth, ACI, or Lewis rats were exposed to experimental aerosols containing virulent RVFV. Wistar-Furth rats developed a rapidly progressing lethal hepatic disease after inhalational exposure; ACI rats were 100-fold less susceptible and developed fatal encephalitis after infection. Lewis rats, which do not succumb to parenteral inoculation with RVFV, developed fatal encephalitis after aerosol infection. RVFV was found in the liver, lung, spleen, heart, kidney and brain of Wistar Furth rats that succumbed after aerosol exposure. In contrast, RVFV was found only in the brains of ACI or Lewis rats that succumbed after aerosol exposure. Lewis rats that survived s.c. infection were not protected against subsequent re-challenge by aerosol exposure to the homologous virus. This is the first side-by-side comparison of the lethality and pathogenesis of RVFV in three rat strains after aerosol exposure and the first step toward developing a rodent model suitable for use under the FDA Animal Rule to test potential vaccines and therapeutics for aerosol exposure to RVFV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance to Rift Valley fever virus in Rattus norvegicus: genetic variability within certain 'inbred' strains.

Rift Valley fever virus (RVFV) is the causative agent of Rift Valley fever, a widespread disease of domestic animals and humans in sub-Saharan Africa. Laboratory rats have frequently been used as an animal model for studying the pathogenesis of Rift Valley fever. It is shown here that Lewis rats (LEW/mol) are susceptible to infection with RVFV, whereas Wistar-Furth (WF/mol) rats are resistant t...

متن کامل

Rift Valley Fever Virus Infection in Golden Syrian Hamsters

Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of appr...

متن کامل

Mapping a Major Gene for Resistance to Rift Valley Fever Virus in Laboratory Rats.

The Rift Valley Fever virus (RVFV) presents an epidemic and epizootic threat in sub-Saharan Africa, Egypt, and the Arabian Peninsula, and has furthermore recently gained attention as a potential weapon of bioterrorism due to its ability to infect both livestock and humans. Inbred rat strains show similar characteristic responses to the disease as humans and livestock, making them a suitable mod...

متن کامل

A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever.

Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hem...

متن کامل

Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

BACKGROUND Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012